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Abstract. A method of direct calculation of Madelung sums in molecular crystals is proposed.
It is based on preliminary evaluation of Coulomb interaction of two contrarily charged elements
of a crystal cell translated over the whole crystal. As a result some Madelung parameters similar
to Coulomb integrals enter the molecular crystal Hartree–Fock equations whose dimensionality
remains the same as for the isolated molecule. As an illustration of this approach the alteration
of the hyperpolarizability tensors of urea and triaminotrinitrobenzene (TATB) molecules are
calculated when these molecules enter a crystal. A possible explanation of the second-harmonic
generation ability by TATB is given.

1. Introduction

In recent years, much attention has been paid to the calculation of non-linear electrical
properties of molecular crystals (see, e.g., [1] and other papers in that issue). The most
interesting problem is the change in the properties of a separate molecule when it is placed
into a crystal. This change is determined by the changed electron distribution caused
by similar molecules in a crystal with the same altered electron density. The account
of polarization of molecular electron clouds is necessary to describe this intermolecular
influence. This is an additional problem compared with calculation of the packing energy
which is often done by means of the atom–atom potentials usually taking the Buckingham
form

V (r) = A exp(−ar) − B/r6. (1)

This scheme with the constantsA, B and a, which are easily adjusted for each type of
atom of a chosen molecular crystal class, gives satisfactory results for the sublimation
energy, molecular positions and crystal cell parameters (see, e.g., [2]). However, the
polarization problem is outside the framework of this approach. Moreover, this scheme
has a conceptual drawback, considering the intermolecular (1) and intramolecular electronic
Coulomb interactions in quite different manners.

There are various methods accounting for molecular polarization and interaction. In
the cluster method [3] the Hartree–Fock approximation is applied to a ‘supermolecule’
consisting of all molecules which enter the same crystalline cell and interact through the
Coulomb term of the Fock operator. This procedure does not reflect the true crystal
symmetry and therefore the calculated first hyperpolarizability tensor contains incorrect
non-zero components [3]. The more rigorous reaction field method [4] can hardly be used
for calculation of the equilibrium positions of molecules in the unit cell and other parameters,
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except for susceptibilities. An interesting way to account for the real crystal symmetry is
used in [5] where the Coulomb forces are included in the Fock operator which originates
from atoms of the adjacent cells confined by the hydrogen bonds to the molecules from
the cell considered. The charges on the adjacent atoms repeat the corresponding charges
obtained from the Hartree–Fock calculation of the cell under consideration. An additional
self-consistency procedure over these charges guarantees the desired symmetry. Another
way to account for the crystal symmetry has already been proposed in [6]. An alternative
possibility for reproducing the correct molecular properties in a crystal is to calculate the
number of higher and inhomogeneous (quadrupole, octupole, etc) polarizabilities in the spirit
of [7] and then to use them to determine the reaction field.

Here we shall follow a direct way which allows one to find the ground state of
molecules in a crystal, as well as hyperpolarizabilities similarly to the free molecule, e.g.
by the Hartree–Fock method. The potential created by all molecules of the crystal with
an identical electron distribution enters only the Coulomb term in the Fock operator since
molecular wavefunctions are assumed not to overlap as in [3, 5, 8]. However, in our case,
each element of charge is repeated periodically and serves as the origin of the Madelung
potential. Certainly, this potential should be recalculated in every cycle of the Hartree–Fock
self-consistency process together with the electron distribution. This procedure seems to
be very cumbersome. Nevertheless, as is shown below, the Madelung formula applied to
the volume case [9], which can be used for arbitrary crystals [10], allows one to simplify
this scheme significantly. The proposed procedure generalizes the calculation method of
molecular ion polarization by the lattice of fixed point charges [11] to the translationally
invariant set of variable charges. The relation of this scheme to the previous papers on
the Madelung constant calculation has been discussed in [9–11]. In addition we mention a
general treatment of the problem by Williams [12] and the recent work of Hummer [13] on
the numerical accuracy of the Evald method.

The main present idea is that the Madelung interaction of an arbitrary pair of cell
‘elements’ may be calculated beforehand similarly to the Madelung constants or to integrals
between basis orbitals. As a result the self-consistency procedure for the molecule in a
crystal is not more complicated than that for the free molecule. Only Coulomb interaction
integrals obtain increments from the ‘pair Madelung constants’. Hence infinite summation
in each Hartree–Fock iteration is avoided.

In section 3 the proposed scheme is illustrated by calculation of the first
hyperpolarizability tensor increments for the urea and triaminotrinitrobenzene (TATB)
crystals.

2. The calculational method

As was shown in [10], the potential at a pointr(x, y, z) of the crystal cell created by
unit charges placed at a pointR(X, Y, Z) of the same cell and at all points, obtained by
its translation, and also by compensating charges of−1 at the origin of each cell can be
presented in the form

V (r, R) = S(ρ1, x, X) + S(ρ2, y, Y ) + S(ρ3, z, Z). (2)

Here coordinates are measured in units of the perioda along, for example, thez axis and

S(ρ, z, Z) = F(ρ, z) − F(ρ, z − Z) (3)

F(ρ, z) = 4
∞∑
l−1

K0(2πlρ) cos(2πlz) ρ 6= 0 (4)
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F(O, z) = 1

z(1 − z)
+ 2z

∞∑
k=1

1

k(k2 − z2)
(4′)

ρ1 =
√

y2 + z2 ρ2 =
√

(x − X)2 + z2 ρ3 =
√

(x − X)2 + (y − Y )2. (5)

The convergence of the series (4) of the McDonald functionsK0 is rather rapid since, in
the real case,ρ is far from zero.

These equations may be used for molecular crystals as well. When a molecular
wavefunction is built of linear combinations of atomic orbitals, the natural discretization of
molecular charge appears. Namely,

Pss = 2
occ∑
i

c2
is (6)

is the charge ascribed to thesth atomic orbital according to the Mulliken [14] population
analysis (cis are the orbital expansion coefficients). This charge creates the Coulombic
potential of type 1/|r − rA| whererA is the centre of thesth orbital. As a result in the first
approximation the term

Dtt =
∑

A(6=B)

QA

RAB

(7)

appears in the diagonal matrix elementFtt of the Fock operator whereRAB is the
distance between the nuclei A and B of different molecules (the orbitalt belongs to B),
QA = PA − ZA, ZA is the nuclear charge andPA is the ‘gross population’ [14] of the atom
A, given by

PA =
∑
s∈A

Pss. (8)

Thus each diagonal matrix elementFtt of the ‘atom’ B obtains an incrementDtt (7) when
a molecule is placed into a crystal. As a consequence of the orbital orthogonality,∑

A

PA =
m∑

s=1

Pss = N (9)

N is the total electron number, and the ‘atom’ is a set of basis orbitals centred at some
nucleus. Therefore∑

A

QA = N −
∑
A

ZA = 0 (10)

is the total molecular charge which we have assumed to be zero. In fact, sum (7)
approximates the expression

m∑
s=1

Pss(ts|ts) −
∑
A

ZAUA,tt (11)

where the standard notation for electron repulsion integrals is used, andUA,tt =∫
χ2

t (r)dV/|r − RA| is the nuclear attraction integral. Equation (7) is valid at large
internuclear distances, i.e. just in the region essential for calculation of crystal sums. If
necessary, some nearest-neighbour terms in equation (7) may be replaced by expressions of
type (11).
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For clarity the case when each ‘atom’ consists of a single orbital (e.g. in theπ -electron
systems) will be considered in more detail. In this case the additional contribution to the
diagonal element (9) is reduced to

Dtt =
∑

l

m∑
s=1

Qs

Rts(l)

. (12)

Rts(l) is the distance between the centre of thet th orbital of the zero cell and the centre of the
sth orbital in a cell with the origin atl, andQs is the residualπ charge. The first summation∑

l in (12) is taken over all crystal cells and the second over all basis orbitals of the molecule
considered. We cannot interchange the summations directly. However, as a consequence of
(10) (

∑m
s=1 Qs = 0) we can subtract from (12) the zero sum

∑m
s=1 Qs

∑
l 1/|l| and present

Dtt in the form

Dtt =
m∑

s=1

Qs

∑
l

(
1

Rts(l)

− 1

|l|
)

. (13)

The internal sum is just the Madelung potential as defined in equation (2). It depends on
the position of thet th andsth points in the zero crystal cell:

Dtt =
m∑

s=1

QsV (t, s). (14)

Now it is evident that the same transformation may be used when the crystal is built up of
identical molecular ions whose chargeQ = ∑

Qs 6= 0 is compensated by the point charges
−Q situated at the origin of each cell.

It should be noted thatV (t, s) 6= V (s, t). However,V (t, s) − V (t, t) according to the
definition (2) describes the Madelung potential at the pointt when the point charge−1 is
placed at it whereas the charge+1 is situated ats. ObviouslyV (s, t) − V (s, s) gives the
same potential since it does not depend on simultaneous change in signs of both charges.
Therefore

Vts ≡ V (t, s) − V (t, t) = V (s, t) − V (s, s) = Vst . (15)

The substitution of (15) into (14) leads to

Dtt =
m∑

s=1

Qs(Vts + V (t, t)) =
m∑

s=1

QsVts + V (t, t)

m∑
s=1

Qs =
m∑

s=1

QsVts . (16)

Including the termDtt in the diagonal element of the Fockian, we must bear in mind that
the latter already contains the interaction between orbitalst and s in its Coulomb part if
these both belong to the same molecule. Therefore the final result is

Uts = Vts −
{

1/Rts

0.
(17)

The first formula should be used if both centres belong to the same molecule while the
second formula has to be applied ift and s are in different molecules (in crystals which
contain more than one molecule in the unit cell).

Since the Coulomb term in the Fockian usually looks like
∑m

s=1 γtsQs , the only
difference between the calculation of the isolated molecule and the same molecule in a
crystal is that the Coulomb repulsion integralsγts in the second case should be replaced
by γts + Uts . Applying this simple final prescription also to the coupled Hartree–Fock
peturbation theory, to the random-phase approximation, etc, we can suitably modify the
corresponding computer programs for an isolated molecule [15, 16] and calculate the change
in hyperpolarizabilities, electron transitions, etc, for molecules in crystals.
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(a)

(b)

(c)

Figure 1. (a) Notation of TATB for (a) and (b). (b) The centrosymmetric hexagonal plane
layer with two molecules in a cell. The lattice vectors are shown. (c) The non-centrosymmetric
trigonal plane layer.x, y are simultaneously coordinates of the projection of the end of the
third lattice vector (for the latticeP 1) or the coordinate origin of the intermediate layer (for
the latticeP E1). c, c′, c′′ show three possible different equivalent positions of the origin of the
intermediate layer inP E1.

3. Some illustrative model calculations

3.1. Urea crystal of symmetryP 4̄21m

The simplest example which we shall consider in theπ -electron approximation is the urea
crystal of symmetryP 4̄21m containing two molecules in a cell with parametersa = 5.67 Å
and c = 4.73 Å [17]. Here the matrixU consists of two identical diagonal blocks which
describe interactions only with all other cells while the non-diagonal block includes the
action of atoms from the same cell.

From equation (15) it is clear that alwaysUss = 0. The matrixU is determined only by
the cell parameters and positions of the corresponding points (s, t) in a cell. It is independent
both of the cell content and of the method of calculation of the electronic state of a molecule.
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ThereforeUst may be calculated beforehand for many cases as well as the usual Madelung
constants.

With the U-values calculated, the atomic net charges obtained are 0.223 on N,−0.738
on O, and 0.292 on C and they change compared with the values for the free molecule
which are 0.180,−0.651 and 0.291, respectively. As a result of the charge transfer from
N to O the dipole moment increases from 5.1 to 5.9 D. The Madelung energy per cell is
−1.303 eV, which corresponds to the general energy lowering of 1.128 eV for the pair of
molecules. It should be emphasized that all these values have been obtained accounting
only for Coulomb forces which themselves cannot guarantee the core repulsion arising
from the overlap of wavefunctions. However, as is known, new solutions may appear at the
instability threshold of the Hartree–Fock equations [18]. This peculiarity of the Hartree–
Fock approach is directly connected to the problem considered. If two molecules in a unit
cell are located too close (this can be modelled by a decrease in the lattice parametera),
then collapse occurs at some value of the parametera before it reaches the sum of the
geometrical sizes of molecules in a cell in spite of ignoring the wavefunction overlap and
the core repulsion. Namely, the crystal turns into the ionic form; one molecule transfers
into a dication and the other into a dianion.

Thus, a reasonable qualitative picture is obtained without any adjustment parameters.
The π -electron Hamiltonian used has been fitted to reproduce the non-linear optical
properties of benzene, styrene and stilbene derivatives not including urea [15, 16]. Therefore
the description of the non-linear optical properties of this crystal is of some interest. As
a consequence of the crystal symmetry, mostβijk components in the crystal, except for
βxyz, are zero. Nevertheless, since each molecule is characterized by its own wavefunction
as a result of neglect of the overlap, we can calculate the properties of the individual
molecule in a crystal in quite a standard manner. In the approximation used, there are
only two non-zero components of the first hyperpolarizability tensorβyyy = −60.0 au and
βxxy = 108.8 au, where they axis coincides with the molecular symmetry axis, and thex

axis lies in the molecular plane. The calculation for the free molecule givesβyyy = −46.0 au
andβxxy = 83.5 au. These results are in a reasonable agreement with the best non-empirical
calculation for urea [5] where for the free molecule it has been found thatβyyy = −44.1 au
andβxxy = 23.1 au and, for the molecule in a crystal,βyyy = −74.1 au andβxxy = 31.5 au.
For comparison a model crystal of the same molecules with parallel orientation has also
been considered. In this case,βyyy = −71.6 au andβxxy = 121.3 au.

3.2. The triaminotrinitrobenzene crystal

Our second illustration is the TATB crystal [2]. The interest in this system has arisen
after demonstration of that this centrosymmetric crystal [19] is able to generate the second
harmonic [20]. In [2] it was supposed that the second-harmonic generation is due to
the presence of domains with identical orientations of molecules in adjacent layers since
an approximately equal packing energy for parallel and antiparallel orientations in the
neighbouring layers has been found. The present approach leads to a similar conclusion.
Additionally it will be established that hyperpolarizability of the TATB molecule in the
crystal increases by more than three times compared with the free molecule for both
orientation types. This allows us to give a more detailed explanation of why the netβijk in
the crystal is non-zero.

Two types of plane elementary cell have been considered in [20]: hexagonal
centrosymmetric and trigonal without a centre of symmetry (figure 1). For the experimental
lattice parameters [19]a = 9.02 Å and β = 120◦, the π -electron calculation with the
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Hamiltonian [15] reveals that the hexagonal layer is unstable as a consequence of the large
positive Madelung energy, 1.22 eV, while the trigonal layer manifests a small Coulomb
binding energy of 0.05 eV which corresponds to the assumptions made [20]. (The hydrogen
bonds are not considered explicitly.) Then the relative positions of adjacent, identically
oriented layers have been optimized for the interlayer distanceh = 3.138 Å. The energy
minimum occurs for a relative shift ofy = a/2 which corresponds to the remaining cell
parametersc = 5.495 Å, α = 114.23◦ andγ = 34.83◦ of the P 1-type lattice. As is clear
from figure 2, where the potential surface above the triangle OBC (figure 1) is presented,
the above cell parameters ensure an absolute minimum with respect to sliding of the
layers. The calculated Madelung energy is−0.791 eV and the packing energy is 0.515 eV.
This structure is characterized by a significant increase in the hyperpolarizability tensor
components of the free molecule:βxxy = −βyyy = 1403 au which becomeβxxy = 4179 au
andβyyy = −6277 au.

Figure 2. The independent section of the potential surface for the P1 lattice above the triangle
OBC (see figure 1). The lattice energy is shown as a function of coordinates of the third lattice
vector projection onto the layer plane. The whole potential surface is composed of six similar
parts.

In the aboveP 1 lattice, each two next-neighbour layers are not shifted relatively.
Therefore we can use the same system with the cell parametersα = γ = 90◦, β = 120◦,
a = 9.02 Å, c = 2h = 6.277 Å and two molecules per cell as the starting point for the
centrosymmetricP E1 lattice if the second molecule is rotated by 60◦ (180◦) around thez axis.
A small displacement (0.29̊A) of the second molecule along they axis is necessary to obtain
the energy minimum in this case since NO2 groups are repulsed slightly more strongly than
are NH2 groups. As a result the packing energy per molecule becomes 0.537 eV. When
moving from the middle (y = 4.51 Å) to the minimum (y = 4.80 Å), the hyperpolarizability
decreases fromβyyy = −6067 au andβxxy = 4083 au toβyyy = −5567 au and
βxxy = 4031 au.

The non-central position of the minimum on the lattice vector line gives an additional
argument for the generation ability of the TATB crystal. There are three equivalent positions
of the minimum on each of the three hexagonal-type lattice vectors mutually rotated by
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120◦ in the molecular plane. The adjacent layer may take any of these. The crystal would
be exactly centrosymmetric if every adjacent layer were moved in the same direction (of
the three possible) or if it were displaced exactly by half the lattice vector. Otherwise
the TATB symmetry axis cannot be directed simultaneously to the molecular centres of
the nearest-neighbour and the next-neighbour layers, which leads to a small rotational
perturbation of each TATB molecule. Thus, each irregular alternation of layers, in the
above sense, will perturb the centrosymmetric orientation of molecules in the crystal cell.
The deviation, e.g. by only 1◦ from 60◦, induces a non-zeroβ of a cell with the norm
‖ β ‖= √

βijkβijk = 321 au (the octupolar norm [21] is 318.9 au) which is three times
greater than the total above-calculated value ofβ in the urea crystal. The energy rise
accompanying this rotation is less than 0.001 eV which is much smaller than that required
(0.022 eV) for parallel arrangement of layers and may be cancelled by the above-mentioned
perturbation.

4. Conclusion

A method of direct inclusion of the intermolecular Coulomb interactions between molecular
electronic clouds into crystal Hartree–Fock equations is proposed. The latter retain the
same form and dimension as for the isolated molecule and guarantee the correct crystal
symmetry. The method admits a proper description of the mutual influence of molecules in
a crystal on their electronic properties which depend only on the model used for calculation
of the isolated molecule. The simplified examples of urea and TATB crystals considered
demonstrate that this scheme is able to estimate their first hyperpolarizabilities.
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